DIPL.OMARBEIT
COMmpass”)

DESIGN AND DEVELOPMENT OF

A CDHS FOR A PICO SATELLITE

_______ ¢
o
C
“_.-"
Author AP
Artur Scholz
Matrikel Nr. 185871 —

Fachhochschule Aachen

Fh.H # e

miahrt.fh- de e

Command and Data Handling System: Design and Development

Scope

This paper documents the design and development of the on-board computer system for the
Compass-1 picosatellite, i.e. the so-called command and data handling system (CDHS). The
work is based upon the preceding detailed definitions elaborated in previous studies [1] and
goes in accordance with the CubeSat specifications [2] wherever applicable.

All work was carried out by me personally. Whenever there is a quotation, the corresponding
reference is noted and can be found in the appendix.

Artur Scholz
Aachen, 24.09.2004

Acknowledgements

First | liketo thank Prof. Blome, Prof. Ley and Mr. Plescher for their efforts and support for
me personally and the Compass-1 project in general. In particular Mr. Plescher has become
the point of contact for our questions and organizational issues concerning the realization of
this project.

It isabig venture to parallel design a computer system for a picosatellite in terms of hardware
and software. Since | could not revert to extensive electrical engineering background | had to
start alot of research to improve my capabilities in this area. But | would not have been able
to complete this activity without the enormous help of Prof. Dr. Timo Bretschneider and the
team of the Satellite Engineering Centre, Singapore.

The development activities of the engineering model turned out to be more convenient. The
file with the PCB layout was handed over to Mr. Nieren at the electric workshop at the FH
Aachen and the board was produced within afew days.

| also want to express my thanks to the German Academic Exchange Service, DAAD, for the
scholarship that made it possible for me to conduct main parts of my diploma work in
Singapore.

Command and Data Handling System: Design and Development

Contents

L OVEINVIBIW ettt ettt e st ete e e e s e tees e e sseeeeeneeaseenseeneesseenseeneeaneenseanensneesennnens 5
00 1 0o 1 1 o SR 5
1.2 PUrp0SE Of tNE CDHS ...ttt et e s beeeesbesreenresaeennenes 6
1.3 The Design and Devel OpMENt PrOCESS........coiiieii ettt sttt sre e st e re s ne e 6
1.3.1 Hardware Design and DEVE OPIMENLccoiiiiiirieierie ettt st se b e sneenas 9

1.3.2 Software Design and DeVEIOPIMENLccciiiireiieereeee et 12

1.3.3 System Assembly, INtegration @nd TESE........cccoriiiirrireee e e 14

1.4 Design Approach to Failure MinimizZation............ccecoiiiieeieseesee ettt sre e 16
1.4.1 CompPONENt ClasSifiCaION.ccueiierieirieree ettt sttt sttt 16

1.4.2 Failure Sources and Intended COUNLEIMEASUIESccveeereeriererieseseeeeeeseeseesee e sseesesseessessessessessens 16

P2 o = o AT RSP 18
AN RO Y= T 1 OO 18
2.2 HarAWare DESIGN TOOIS.c.ueieiieiiriieiisie sttt b e et et ne e 19
2.3 Design and Devel OpmENt ACHIVITIES.......coirireeieises e 20
2.3. 1 MechaniCal DEfINITIONcccveierirece sttt se e te e s aesresseese e e eneesaesrenes 21

2.3.2 SChEMELIC GENEBLION. ...ttt b st e et et b bt bt s st e s e e e e b e s bt sbesbeeaeene e s ebeseesbeneas 24

2.3.3 Components Description and INtErCONNECLIONSeierieiierieriesie e e 27

2.3.4 Transition from SChemMatic 10 PCB ..o e 35

2. 3.5 Part PLABCEMENT ...ttt bttt b e bt bt et e s e e e e b e b ebe b ae e e e e neesre e 35

P2 NSl 2 (o U 1] o [OOSR PSPPSR 36

2.3.7 DESIGN VENTICAIION.eitiieiiieeet sttt et sttt b e bbb et e s b e ne b st e e ebenbe e 37

2.4 DeVElOPMENT ACHIVITIES.....ccuiiiice ettt et s ae et e st e e e s besbeentesaeeaeenns 37
P2 =TTl o= o o o o S 37

P o o (< g o o TSROSO PTSTPR PRSPPI 38
2.4.3INSPECLTION ANO TESLING ... vveteeetirtereeteste ettt sttt sttt ettt sttt st b e b st e bt s b e e ebesbeseebesbeseebesbeseebenrenea 38
TS0 17 T =SS 39
TN @V 4T T SR 39
3.2 Integrated Development EnvironmMent (IDE)cooiiiiiinineieeeesesese e 40
3.3 Design and Devel OpmMENt ACHIVITIES.......ccivireieieirese e 41
3.3.1 SOWAIE SEIUCTUN ...ttt ettt ettt b e a e bt b et e b bt s bt e b e et e b e seesbesbe e beebe e e et e neenbeseeene 41

CRC I V1= 1010 YA @ o= a2 (0] PSS 42

3.3.3 The System Bus. Command and Data TraffiCccccceveeiieiiiie e 44

3.3 A TRNETASK MBINAGEcveeeiirieieieite ettt b et b bbb s bt e s bt e et b et et e b e s e e b e enes 46

RS RSN o o T ot 0= B DT~ o TSRS 47

G T = 1T [0 T SR 53
G 0 1= PRSP 53

I V= =T PRSP 53
Gl 60 £ TSP UPRUPRUUTROPN 54

Command and Data Handling System: Design and Development

4. RISK ANAIYSIS. ...ttt bbbttt e et e b e 55
LT O] Tox 11 1= T o] o TR 58
(ST a1 A= R 59
6.1 Bill Of Material (BOM).....ccouiiiicee ettt ettt ettt st st sre et s ae e e st e e e e s besbeennesaeennenns 59
6.2 ApPlICATION LAYEr COUE........ouiceeieceece ettt ettt sttt e re et s e e e st e e e e s besbeennesaeeneenns 60
6.3 ThE COMMEANT COUES ... eeeeeeeeeeee et eee e e e ee e e e e aeeeeeeaaseeeseanseeessansneessansneeseansneessanreeessanns 61
5.4 DEVICE SIaVE AQUINESSES.eeeeeeeee e ettt e e e e e e ettt eeeeeeeaa e eeeeeeessaaasseeeeeeesssaasnreseeeeessaaannnneneeees 61
6.5 Severity, Occurrence, and Detection Criteriafor FMEA ..o e 62
(SN I AN o] o[L=V F= (0] TR OPRTR 63
AL R G (= (= (0= TR TP PRTR 64

Command and Data Handling System: Design and Development

1. Overview

1.1 Introduction

The design and development activities for the command and data handling system of the
Compass-1 picosatellite were largely carried out at the Satellite Engineering Centre* (SEC),
which is part of the Nanyang Technological University? (NTU) at Singapore. The time frame
was defined within three months. Beforehand, within a preparation time of about two months,
confidence was gained in handling the PCB software by means of preliminary drafts created
at the satellite lab of the FH Aachen®.

The outcome of this work is wholly dedicated to the Compass-1 satellite’, which is being
developed at the FH Aachen. At the same time, the work corresponds to the obligatory final
year thesis that has to be completed by each student to eventually graduate.

The expected results of the works are twofold: Primarily it shall result in a fully developed
engineering model (EM) of the CDHS in order to expose it to physical testing and integration
test for final assembly of the whole spacecraft. The second important aspect of thiswork isto
supply a comprehensive and comprehensible documentation of how this system was
elaborated. Expectantly it will serve as a guideline for future ventures with similar charac-
teristics.

The engineering model shall path the way for the subsequent flight model, which in turn is
supposed to have only slight modifications; in the best case it would have virtually none. This
means, that the engineering model reflects the corresponding system in such away, as that all
necessary measurements have been applied and all critical aspects found consideration.
Essentially the engineering model encompasses the main board with its electrical components
and connectors and the dedicated software, implemented in the main controller unit.

The software which was used for the hardware layout is Protel 2004. Altium supplied a
license that allows the full utilization of their software CAD product until the end of 2004.
The software package has proven to be powerful and at the same time intuitive in its handling.

For the development of the software code the Integrated Development Environment (IDE)
from Silicon Laborites was used. It is included in the Evaluation Board package sold by
Silicon Laboratories and makes use of the Keil ‘C’ Compiler and Assembler. The ‘C
Compiler is however limited to a code size of 4 Kbytesin this free version.

! http://www.ntu.edu.sg/centre/sec/

2 http://www.ntu.edu.sg/

® http://www.fh-aachen.de

* http://www.raumfahrt.fh-aachen.de

Command and Data Handling System: Design and Development

1.2 Purpose of the CDHS

The satellites command and data traffic has to be routed and scheduled in an appropriative
manner that takes into account the specific mission objectives and requirements. Furthermore
the payload data may usually imply the need of computing functions to be carried out on
board the spacecraft.

The CDHS of Compass-1 does this by providing hardware and software solutions for the
controller unit, the system bus, the data memory unit and the payload interface unit.

The command and data handling subsystem is responsible for running the spacecraft in an
ordered and ‘intelligent’ manner according to its flight program. It is the ‘brain’ of the
operation. Whereas the Electrical Power System (EPS) is responsible to guarantee a minimum
working system in order to keep the satellite alive, only the CDHS alows the satellite to fully
carry out the mission goals and hence distinguish the spacecraft from usel ess space debris.

The basic functions of the Compass-1 CDHS are to execute commands coming from ground
(and arriving at the CDHS via the COM subsystem) and periodically gather vital information
from other subsystems and store them in memory.

The commands from ground encompass the change of ADCS parameters, image capturing
and transmission and request for housekeeping data. The CDHS ensures that this data is
available on by providing a non-volatile mass memory unit. It also provides the system bus
interface to the other subsystem boards.

1.3 The Design and Development Process

The design process shall derive a physical architecture and design (including software), from
functional analysis and requirement allocation. The output from the design will describe the
system physically and in terms of software on the lowest assembly levels, budgets, interfaces
and relationships between external and internal items. The subsequent development activities
then cover the production of the system. The block diagram in figure 1.1 illustrates the entire
subsystem life cycle.

Hardware and Software design and development generally goes hand in hand. Yet, the
software is by nature the more flexible part that can be modified more easily at later stages to
justify ad-hoc changes. The hardware however, once it is finaly developed, is less likely to
adopt changes since in most cases this would result in the production of a new piece of its
kind. Therefore it is very advisable to finish with the hardware design first but wait with the
development until the software has advanced far enough, so that modifications that occurred
due to software design can still be integrated in the hardware design.

Command and Data Handling System: Design and Development

Subsystem Requirements ‘What' the system
Allocation must achieve
A\ 4
Functional Analysis ‘How' to)
achieveit
Functions allocated Functions allocated > Phase B
to Hardware to Software
A\ 4 A\ 4
Hardware Definition Software Definition)
— / 3 / \ ~
Circuit Design Flow Charts of
Modules
\ Hardware \ Software
v Design & v Design &
PCB Layout & Development | Programming of Devel opment
Fabrication) Modules) > Phase C/D
A\ 4 A\ 4
PCB Assembly, Debugging
Test
System AIT -
\ 4
Operation
\4
Disposal

Figure 1.1: The product life cycle CDHS subsystem

Subsystem Requirements Allocation

This first step concentrates on the requirements that are exposed to the subsystem.
Beforehand, the overall system had been divided into smaller functional blocks, and passed
on certain requirements to them. Each subsystem consequently has to fully comply with the
reguirements to make the system work as awhole. And even so a satellite might be composed
of the same set of subsystems that another satellite has, the specific requirements of the
particular subsystems might differ significantly according to the spacecraft mission
objectives. Generally, the requirements can be obtained by asking ‘what’ the subsystem shall
achieve. As an example, one can figure out that the CDHS has to store data from the payload.

7

Command and Data Handling System: Design and Development

Functional Analysis

An analysis is then carried out to translate the requirements into functions. Functions
describe the proposed solution to the requirements by asking ‘how’ they can be accomplished.
This step does not come up with a suggestion of specific components that can be used.
Instead, it describes the functions that have to be fulfilled by this subsystem. In our example,
the CDHS requirement to store the data would be formulated as to include a memory as
functional element.

Allocation of Functions

The elaborated functions are then grouped and partitioned in order to address them to
the next lower assembly level, i.e. the hardware and software parts. This process is strongly
influenced by constraints and requirements, such as available technology, cost, schedule, risk,
manufacturing and test capabilities, the space environment factors, and other considerations.
The implementation of each functional element is based on these decisions.

Asfor electronics, either hardware or software, and sometimes a combination of both, can be
used to implement those functions. In fact, very few electronic functions are now performed
solely with software or hardware. Most require a combination of both to meet their
requirements. By its nature, software tends to be the more flexible solution as it alows
modifications even in advanced stages of the product life cycle. Hardware though, once
developed, will be more cost and time consuming if changes have to be implemented because
in most cases this would cause the manufacturing of a new piece of it. It is nevertheless
advisable to address as many functions to the hardware as possible because in space the
software is more delicate to malfunctions.

Hardwar e Definition

Following the allocation of functions, components are selected using trade-off studies
that again take into account availability, cost, heritage, risk, schedule and so on to find the
most suitable product for that specific task. It shall however be noted, that there will always
be products that might suit the purpose better than the chosen one, especially in the
electronics industry where performance increases are very fast paced. Therefore, the final
selection has to be seen as the most appropriate solution at that time, which was chosen with
due diligence.

Softwar e Definition

Also for the software there exist fully developed solutions, e.g. operations systems
(OS). The OS enables the programmer to write code on a highly abstractive level, which does
not take into account the final hardware selection but rather concentrates on the functions to
be carried out. The main advantage of this is that the code can be easily modified and
transferred to other hardware configurations of even other projects.

The other possible way to define the software would be to write a code that is dedicated to the
chosen hardware configuration. In that way, the hardware resources can be fully utilized and
the code size will remain relatively small compared to an OS (however, the programmer will
have to write more lines of code since all low level routines have to be written as well).

By either method, a top-down approach is highly desirable, which enables the programmer to
write from the highest level (the flight software) downwards to the lowest level (i.e. the OS or
hardware interfaces, respectively). Thus the top level flow chart shall be created at this stage.

Command and Data Handling System: Design and Development

1.3.1 Hardwar e Design and Development

Next to the software design and development this is the one mgor part covered within this
documentation. All activities attached to the design and development process are carried out
within phase C/D and its application and results can be found in the next chapters. Figure 1.2
shows those activities again in more detail.

Circuit Design)
> With Protel 2004
PCB Layout
4
PCB Fabrication Engineering model, In-house at
FH Aachen

Figure 1.2: The hardware design and devel opment process

Idedlly, each step in the process should be accomplished in a logical sequence, avoiding
“loop-backs’ or repeated activities in order to save time, money and human resources.
However, such a perfect approach is hardly ever achieved. Therefore it is very advisable to
make use of gateways or reviews after each block in order to ‘freeze’ a successful design. For
a student project with avery limited time schedule, thiswill not be done in an official manner
but rather as an individual attitude towards the own work.

Circuit Design

After the functions are addressed to the subsystem and the technical solutions to
implement those are defined, the design of the circuitry can begin. Initialy the
interoperability of the devicesisidentified, i.e. how they will work with each other. Then the
signa flow is determined, covering signals within the subsystems components (i.e. the
internal interfaces) and with external interfaces. These interfaces have to suit certain
requirements, such as data structure and content, compatibility, physical connection and
signal timing if appropriate.

Included in the circuit design is the selection of parts that are necessary to implement in order
to adjust the main devices in a proper manner, e.g. resistors and capacitors. Finaly, all
circuitry required for each function on the subsystem can be designed in detail.

It should be mentioned that the circuit design activities usually are the most time-consuming
part of the hardware design. Once the circuit has been proven to be correct, the downstream
operations ought to be straightforward.

Command and Data Handling System: Design and Development

At this stage of the design process it might be appropriate to set up breadboards or construct a
simulation model in order to demonstrate that the design is conceptually sound before it is
handed over to the layout process.

The result of the circuit design will be one or a set of schematically drawings, i.e. schematics,
which build the basis for the next step: the layout process.

PCB L ayout

The circuitry created in the previous step is based upon logical interconnections. Now
these logical connections consequently are trandlated into physical tracks, which will
eventualy lead to the layout of the fina PCB. This step also takes into account other
important issues, e.g. the physical dimensions, such as length, width, height and mounting
methods.

The PCB layout activity consists of the definition of the board layout, establishment of layout
design rules, the transition from the schematic to layout, part placement and finaly, the
routing.

PCB Layout activities:

Definition of board layout: Primarily, the board is defined in its size and
shape by the spacecraft structure and the location where the PCB will be
installed. These are the external requirements. The internal configuration of the
board (e.g. the number of layers and its material) are determined by other
factors, such as fabrication possibilities and costs. The layout aso covers the
definition and location of mounting hardware (e.g. holes for screws) and keep-
out areas (where no tracks shall be placed).

Establishment of layout design rules: The design of the PCB layout is
influenced by a set of constraints, which are formulated as design rules. Those
rules take into account mostly the later manufacturability of the board when the
final layout is handed over to the workshop. Critical aspects are the minimum
track width, the minimum clearance between tracks and so on. Taking those
constraints into account before the actual physical layout design has begun,
saves the designer a lot of work and time because it will be assured that the
PCB layout will be producible.

Transition from schematic to layout: The most important ingredient to the
board layout process is the schematic that has been created in the circuit design
process. It specifies what components are used and how they have to be
interconnected. In a completely automated environment (such as offered by
Protel) the logical parts from the schematic are replaced by their physical
footprints, which are either found in the comprehensive built-in libraries or
manually created by the designer. The footprints (also called land patterns) are
then displayed in the layout sheet and represent the position where the
corresponding component will be placed.

Part placement: This step is one of the most critical ones in the board layout
process. It affects how well the interconnections can be readlized, its
manufacturability (concerning the soldering of the components on the board)
and even environmental issues (thermal, radiation). As each new board design

10

Command and Data Handling System: Design and Development

IS a unique venture, there exist very few standard rules for the placement
process. To some extend, this is a quite arbitrary work. But as can be seen
during the routing activities, there are placement configurations that are much
better than others, because the tracks lengths are much shorter and the whole
interconnections are less complex.

A good approach to optimize placement is to control the so-called rats nest
(the point-to-point interconnections among the components) to avoid too
congested areas. In addition, ones the placement is meant to be complete,
performing a test route with the autorouter helps evaluating the proposed
placement. The location and quantity of unrouted lines indicate problems with
the placement. Hence, the designer can rearrange the parts to solve those
problems iteratively.

Routing: After the part placement the point-to-point interconnections which
are shown as lines from pin to pin are now replaced by physical tracks, taking
into account the previously defined design rules. Depending on the quality of
the autorouter it is advisable to first route most or at least the important
interconnections by hand first and then let the computer finish the work.
Completely autorouted layouts tend to look mazy; even so they follow all the
defined design rules.

PCB Fabrication, Assembly and Test

When the routing has been completed and brought up a satisfying board layout, the
files can be handed over to the manufacturer (commonly in form of ‘Gerber’ files). The
manufacturer produces the PCB according to the layout drawings. Tracks are created either by
chemical or mechanical removing of the conducting metal foil areas next to the lines. The
fabrication also comprises the drilling of holes and Vias (interconnections between layers).
Including a solder mask will facilitate the application and flow of solder employed during
component assembly. Furthermore it will provide environmental protection or insulation
between closely spaced conductors.

Before starting the soldering of components onto the board, the quality of the board shall be
verified. Thisis done by visual inspection as well as electrical testing. The visual inspection
can faster identify broken tracks or short circuits. Also critical contaminations might be
found. Though, only the following electrical test will even recognize defect tracks, which the
human eye would not be able to find. This verification might take some time but it isacritical
activity that should not be left behind.

After the soldering of the components there shall be again inspections and tests. This is done
to confirm that all parts work properly and that they are correctly interconnected. The tests
however can only verify that the parts of the board as a standalone will work whereas
interfaces to external parts can only be taken into account to some extent, such as by
emulating inputs/outputs. The functional testing on the next higher level can only be carried
out when the board is being installed together with the other subsystems into the wholly
system.

Apart from inspections and electrical tests, the board shal also be exposed to harsh
environmental conditions as they appear in orbit, such as thermal cycles, extreme cold and hot
temperatures, radiation and high vacuum. A board that still is fully operationa after those
tests can be seen asreliable to work in space as well.

11

Command and Data Handling System: Design and Development

1.3.2 Softwar e Design and Development

Software programming is an activity that can cause deep frustration or great joy, depending
on the fact if the program is erroneous or if it works correctly. Simultaneously the
programmer is exposed to high pressure on effectiveness, because for a program to work it
requires a code that has no mistakes!

Some people (mainly hobby programmers) use atrial and error approach to get their programs
to work as they wish. They usually implement little planning or detailed design into their
software. Doing so also makes this a very time consuming activity, too.

Trial and error is the least effective way to write software. Instead, the software code shall be
derived from a deliberate and careful design approach that facilitates later changes and
modifications. It also brings more transparency into the code, which is highly appreciated by
other people who want to get themselves familiar with how the program works.

There are two design approaches that are well established among software engineers. Those
are called structured programming and top/down design. Both are mutual important and only
the simultaneously use of both of them can form an efficient synergy.

Many high and middle languages for programming have benefited greatly from those
techniques and in turn reflect those characteristics in their design tools. However, even highly
sophisticated design environments do not enforce good programming. Good programming
depends on the discipline of the programmer. Therefore the programmer has to understand
and embrace the techniques of the mentioned design approaches to benefit from it.

In order to visualize a program and to make the agorithmic process of a code better
understandable, flowcharts are commonly used. A flowchart is a diagram that displays severa
standard symbols connected by flow arrows. Each flowchart symbol represents actions to be
carried out. A flowchart is used as a design tool and will eventually serve for documentation,
when the design is finally established. It clearly illustrates what the program does and how it
doesit.

< terminal > process

Figure 1.3: Flowchart symbols

Flowcharts consist of three basic elements: the terminal, the process block and the decision
(figure 1.3).

Intensive use of comments in the code together with flowcharts is a valuable source of
information for the programmer as well as others.

12

Command and Data Handling System: Design and Development

Structured Programming

Simplicity (much like it is postulated by the KISS idea: “Keep It Simple, Stupid’) is
the key to good programming. Complex programs have a propensity to be less understandable
(even by experts), harder to modify and worst: to write.

The application of flowcharts brings a structure into the code design. Apparently the
flowcharts with only three types of symbols are a smply concept, however connecting those
building blocks in a disorganized manner will result in spaghetti-code rather than a lucid
diagram.

There are again three fundamenta ways to interconnect the flowchart symbols. Those
fundamental program structures are: SEQUENCE, IF-THEN-ELSE and DO-WHILE. They
represent the building blocks of structured programs. In fact, only programs that orderly make
use of those structures are referred to as being correctly structured.

SEQUENCE IF-THEN-ELSE DO-WHILE

Figure 1.4: Fundamental program structures

The SEQUENCE structure is an alignment of process boxes, which are gone through one
after another.

The IF-THEN-ELSE structure chooses between two alternative processes. In case of an IF-
THEN, which means that something is only done under certain conditions, one box would be
left empty. Thisway, aprocessis either carried out or bypassed.

The DO-WHILE is a loop that exits upon a decision. If the condition for exiting the loop is
not fulfilled, the processis repeatedly executed.

Consequently applying and enforcing structured flowcharts may seem as a limitation to the
program code for some people. Nevertheless, if the problem cannot be solved in the
flowchart, neither can it be solved with the code.

Top/Down Design
The top/down approach is an old and simply idea but its application for software
coding is relatively new. It means that one shall look at the bigger picture first and then

13

Command and Data Handling System: Design and Development

elaborate the subsequent levels into finer and finer details during the design activity. It is
much the same approach that is used for the whole spacecraft itself. At first the major
functional parts are identified, which form the top level design. Following that, these
functions are broken down into smaller parts that form the next lower design level. This is
continued until enough detail existsto write and document a software program.

On dll levels, the modules shall be practica and easy to understand. Most important: only
related functions should be together in the same module.

The top/down design approach greatly benefits form the use of flowcharts. Flowcharts shall
be used for each module at each level, whereby a lower level module, which comprises of
various decisions, sequences etc., can be represented by a single process block in the next
higher level. This can be correctly achieved because each process block has a single
beginning point and a single ending point, which is aso true for each module flowchart.

It is the programmer’s decision to decide the number of levels that seem to be useful to
implement in the top/down design. Generally, the flowcharts shall be kept hardware
independent, i.e. no hardware details should be placed in the building blocks of aflowchart.

The programmer does not have to delay the programming activities (which represent the
development process) until the entire software design is complete. Instead, the programming
can and shall start even before the lower levels are designed!

From the high level flowchart the lower level modules can be perceived as black boxes, which
fulfill their designated purposes as soon as they are correctly and completely designed and
programmed. In order to test the high level designs and hence their program code, those black
boxes are replaced by dummy modules, so-called stubs. Stubs do not carry out correct
functions but substitute the real code in a very simply way. They might either return with a
certain value or in many other cases they will just do nothing. The stubs will be later replaced
with the actual code. By doing so, the seemingly impossible suggestion to start programming
(and testing) on higher level before the entire design has finished can be realized.

1.3.3 System Assembly, Integration and Test

The final assembly of the subsystem, its integration into the system and tests on component,
subsystem and system level are all essential procedures within phase C/D. They are however
not covered in this document since it would have gone beyond the scope of this diploma
work. They will be executed afterwards and then separately documented. But the following
will give an idea on how those steps will be realized.

The PCB assembly is done by soldering the devices and components on the manufactured
board. A person who is confident in soldering such small footprints is required for this and
there are some available in the team and at the university also. The equipment is at the lab of
the FH Aachen, too. The program code will then be programmed into the MCU internal
FLASH RAM through the JTAG interface. This is very convenient and allows in-system
debugging as well. That means that the EM board will serve as the test bed for the software.
The complete board will undergo the necessary tests on subsystem level. Previous to that,
some critical devices might be tested beforehand.

14

Command and Data Handling System: Design and Development

The integration into the system means to mount it inside the EM structure and to adjust the
subsystem boards on it. Another connection has to be done from the CDHS board towards the
camera module.

The tests on system level comprise the simulation of in-orbit operation in terms of data and
command exchange. Appropriative ways to emulate the other subsystems and to verify a
proper function of the CDHS have to be created. This phase will finally conclude with the
qualification tests, which will be exposed to the satellite as awhole.

15

Command and Data Handling System: Design and Development

1.4 Design Approach to Failure Minimization

1.4.1 Component Classification

Contrary to most earth-bound gadgets, space technology has to withstand very harsh environ-
mental conditions that exist in the orbit or trgectory the spacecraft is traveling. In particular
the electronic devices are susceptible to failures. Hardware can be affected in such a way as
that a part will fail temporary or even permanent. Software malfunctions will result from
hardware errors and may lead to the complete breakdown of the system if no adequate
countermeasures are implemented.

For that reason industry has developed dedicated components that fulfill the functional
characteristics of their original devices but are qualified to be used in space. But the improved
reliability of those components makes them by magnitudes more expensive. And their
performance can in most cases not draw level with the up-to-date products from the
commercial off-the-shelf (COTS) industry.

For Compass-1 the same is true as for al university satellites: cost budget is tight and
therefore the use of space-graded products is ssmply excluded. Instead, COTS components
will be implemented nearly exclusively. In fact most organizations apply some combination
of approaches to justify the use of COTS components; usually considering the overall life
cycle costs and trading off risks, performance, and costs. For the majority today however, the
main driver for the use of commercial partsis performance and availability [4].

In the following sections the sources for possible malfunctions in the on-board computer
system are anayzed, which might affect in particular commercial devices and practical
countermeasures are discussed.

1.4.2 Failure Sour ces and | ntended Counter measur es

For the electronics of the CDHS board three types of environmental influences are dangerous:

- mechanical deformations
- extreme temperatures
- radiation

M echanical Defor mations

They might be caused by different thermal expansion coefficients of coupled parts, e.g.
the SMD devices and the PCB. In addition, the launch will expose much structural stress on
al of the implemented components. The way to circumvent those failures is to design the
whole spacecraft in such asto avoid centers of extreme stress points. And to conduct tests and
checks that will prove survivability.

Extreme Temperature

All electronic devices will only operate within certain temperature boundaries. If those
limits are exceeded the part will almost certainly fail permanently. The industrial temperature
range specifies proper functionality from -40...+85 degrees and is available for most devices
and parts. Those shall be used preferably for the Compass-1 satellite. Some devices however

16

Command and Data Handling System: Design and Development

do not comply with this characteristic and have to be accommodated in such as that they still
stay within their temperature limits for all orbits.

Radiation

The CDHS board is placed inside the CubeSat frame and thus surrounded by shielding
aluminum plates with a thickness of about Imm. And even so this will block a big amount of
radiation, there is still a fraction going through. Sources of radiation are radiation belts (Van
Allen belt), solar winds and galactic cosmic rays. The effects of radiation can be distinguished
in two groups[5], [6]:

Cumulative long-term degradation
Total lonizing Dose (TID)
Causes degradation of devices

Single event effects (SEE)
Single event upset (SEU)
Causes hitflips (data and code)
Single event latch-up (SEL)
The affected device will draw extensive current and eventually burn out

For the Compass-1 picosatellite, with mission duration of six month, the TID effects are not
of big concern. This can be said because the radiation dose in LEO orbits is in the range
below lkrad/yr and compared to state-of-the-art devices (Flash: up to 10krad, CMOS. approx.
100krad) thisis not significant.

On the other hand the SEE are a significant issue! To reduce the probability of their
occurrence there are two discussable methods: shielding as well as radiation hardening. Both
methods aim for fault avoidance. And both are not practical to the picosatellite approach, due
to the strict mass limitations and the tight cost budget. Note also that the techniques of
shielding as applied to address total dose issues, often prove ineffective for addressing single
event issues, and in some cases can lead to worse situations as particle interact with the
shielding to cause secondary effects.

An efficient approach for a picosatellite like Compass-1 can therefore only be failure
tolerance together with graceful degradation. This encompasses the application of redundancy
in hardware or software. It also includes testing of components to verify their functionality in
space as good as possible. And it means to address priorities to subsystems and sub-parts and
to construct them in such as to have guaranteed minimal working systems in cases of major
malfunctions.

The SEU problems are going to be addressed by a combination of hardware and software.
Thisimplies the use of awatchdog timer and possibly error detection algorithms.

The SEL effect is being solved by the EPS board that cuts off the power supply temporarily in
case of extensive current draw.

17

Command and Data Handling System: Design and Development

2. Hardware

2.1 Overview

The hardware of the command and data handling system essentially comprises a Printed
Circuit Board (PCB) with the electronic devices soldered on both sides and some mounting
aids to attach it properly to the spacecrafts structure. In addition, there are connectors on one
side of the board that connect them to the other subsystem boards. This is illustrated by the
figure 2.1 below.

The PCB, which supports and interconnects the electronic components, is composed of two
basic elements. One is the base substrate, which is a combination of an insulating dielectric
and a reinforcing materia that is embedded within. The other constituent element is a meta
foil from which conductors are formed to produce the circuit paths between the components.

The CDHS circuit design is pure digital because all the processed signals are in binary format,
i.e. they are either logical ‘0’ or*1’. No analog conversion or processing is done on this board.

Apart from the subsystem connectors and the header for the JTAG interface, all components
are surface mounted devices (SMD). Nowadays almost every type of standard part can be
obtained as SMD. This configuration satisfies the need for more complex and highly
miniaturized PCBs. It will aso facilitate the manual soldering process. However, there are
critical aspects attached to the use of SMD parts. The different coefficient of thermal
expansion (CTE) of the board and the device may lead to cracks and broken leads, which
would cause a discontinuity of the connection.

Components are placed on both sides, whereas critical 1Cs are located on the top side in order
to make us of the radiation shielding effects of the boards. It can be seen from the CAD figure
of the inner configuration that those parts that are facing towards the geometric centre will be
less exposed to the harsh radiation that enters from outside the spacecraft.

Figure2.1: The main board location inside the spacecraft

18

Command and Data Handling System: Design and Development

The board is not going to be multilayer but will be limited to use top and bottom layer only. A
double-sided board is much easier and cheaper to develop and due to the relatively small
number of components used on the board (most functions are provided as on-chip solutions) it
does not become necessary to have more then two layers for the tracks. Also, the in-house
workshop of the FH Aachen is limited to the production of double-sided PCBs.

The main electronics that reflect the systems functionality are integrated circuits (ICs) for
digital signal processing. Those devices are the active parts.

Discrete passive devices comprise resistors, capacitors, conductors and inductors and are
necessary to shape the functionality of the ICs and to respond to possible fluctuations in the
signal strengths.

Following the selection of each of the parts to be used for the system, the layout for their
interconnectivity is designed and eventually developed, which is described in detail in the
next sections. The development process itself comprises the manufacturing of the PCB and
the soldering of the components. Finally, tests are carried out to verify the functionality of the
system.

2.2 Hardware Design Tools

The hardware part of the CDHS design and development process concentrates on the creation
of a square printed circuit board with given dimensions. Usually the term PCB refers to
boards that are manufactured by chemical etching (e.g. with iron (111) chloride or ammonium
persulfate), hence it’s referred to as ‘printed’. This approach however is not very practical for
our case, as only a few boards (two engineering models and a flight model) are being built.
PCBs can also be manufactured by mechanical etching, in which atrace is etched by milling
away the copper along its perimeter. Such a CNC milling gadget is available at the FH
Aachen. The final layout has to be delivered to the workshop in form of a ‘Protel 99' or
‘Gerber’ file.

Prior to the layout activities, which comprises component placement and the routing of tracks,
a schematic hasto be created first aswill be explained later on.

There are computer aided design tools available, some of them even freely available at the
internet. The software ‘Eagle’ would be an example for a cost-free program that allows the
creation of Gerber files and provides an easy to use graphical interface. By its nature it aims
the private, non-commercial user market and is by far powerful enough for those purposes.

When it comes to more complex projects, with hierarchic levels of schematics, professional
engineers turn to sophisticated products, such as OrCad and Protel, which provide a solution
for the whole design process, from schematic to final layout. For the design of the
COMPASS-1 CDHS, the company Altium has generously provided a full Protel2004 license
free of charge. Protel2004 enhances the capabilities of its previous version and is backward
compatible. Figure 2.2 shows a snapshot of the software.

19

Command and Data Handling System: Design and Development

['WNowE Ebe Ede Wew Pkt Blace Deson ook Repots dondow beb (RS- hor oo+ Bf EOE Yew Poet Paos [msn Tk paoRose N
| . 5 1 . = Help
[l - ™ i B o R L i iz 7 BB w

=T P ——

f___,_ +
e o :':l"‘:LLJ:

17 men . Gl In

" Figure2.2: Protel 2004

2.3 Design and Development Activities

Outlined in figure 2.3 are the several steps that constitute the design and development process
for the PCB hardware. It starts with the creation of a schematic, which is the reflection of the
circuitry of the devices to be implemented. The critical input to this activity is the mechanical
definition of the PCB, i.e. the constraints that evolve from the specific purpose of the board
and its location and interfaces in the system it is being installed. Following that, the logical
layout is transferred into a physical one with footprints reflecting the position of the
components. Those are then placed in an appropriate manner and will eventually being
routed. When this step has been completed, the board is fabricated and tested.

Command and Data Handling System: Design and Development

Mechanical
Definition

A\ 4
Schematic Generation Transition of Schematic
to PCB

Fabrication | | Routing Part Placement

A

AIT

Figure 2.3: The hardware design and development activities

2.3.1 M echanical Definition

A description of the board's physical/mechanical properties and constraints is the input to
start the circuit layout process.

The workshop of the FH Aachen is able to produce two-layer boards, which means that there
will be atop and a bottom layer for conductor paths. Layer-to-layer connections are realized
by vias. The available space for tracks is a limited resource and will require a proper
placement of the components at a later stage.

Apart from the other components, which are going to be placed in an iterative manner to find
the most suitable configuration, the connectors for the subsystem boards are defined by
structural considerations. Together with the group that is responsible for the spacecraft
structure it was decided to place every two connectors in line with a distance of 54mm from
each other. There will be three lines of connectors; hence three subsystem boards will be
accommodated. The horizontal dimensions for the placement of the connectors are fixed,
whereas the vertical dimensions are slightly negotiable for the following flight model in order
to react to physical requirements, such as the position of the centre of gravity.

Figure 2.1 illustrates the location of the CDHS board (referred to as main board) inside the
spacecraft. Refer to figure 2.4 for the dimensions of the connector’s placements. Figure 2.5
helps to identify the orientation of the board inside the structure by means of a reference
model of the satellite that was established in previous phases of the project.

Located on each corner of the board are the mounting holes, with a hole size of 1.3mm.

21

Command and Data Handling System: Design and Devel opment

85mm

55mm

10mm

board dimensions are 94mm x 94mm

- ADCS hoard
FPS/TCS hoard
o~
)
S
n
. COM hoard
20mm Side 1 (GPS, Antenna...)
74mm
< >

Figure 2.4: Placement of connectors

Side &
Figure 2.5: Reference model

22

Command and Data Handling System: Design and Devel opment

Board Dimensions are 80mm x 65mm

gmm, |

67mm

A

Figure 2.6: Corresponding subsystem board connector layout

23

Command and Data Handling System: Design and Development

2.3.2 Schematic Generation

The schematic layout process derives from the formerly defined functional layout. The
functional layout gives the idea about the interconnections of the electrical devices. It is
shown in figure 2.7 and 2.8.

CND
CND EV
sv ZLDO330 |— 3y3 | JTAG Connector [ELl |
e L
ZHCLIS0 |— 2y JET Connector JET Connector
T | MCU C8051F123 Flash KOF2808UIC
JET Connector JET Connector
3y 5
Clm:k—|
sy 3V
FIFO IDT72¥2111
Camera Connec.
JET Connector JET Connector
[I]
Camera O¥7648FB
Data (§-hit parallel) Power Supply
Figure 2.7: Main devices Figure 2.8: Connectors

It isalogica approach to divide the overall schematic into two sheets, one for the electrical
devices that make up the CDHS and one sheet for the connectors. Please note that the figures
reflect the logical interconnection rather than the physical position of the components.

Taking only into account the device-specific pin configurations, the representation of the
physical components in a schematic is an abstract drawing. Still, to facilitate the recognition
of the parts and for preliminary layout configurations, the size and shape of the models are
kept similar to its real world devices. Each component model is furthermore attached with a
specific footprint model that will be used during transition from schematic to layouit.

For those components where there are no integrated models in the library (because they are
too new or no standard components) models were manually created and are listed in the
appendix for the sake of compl eteness.

Top Level Schematic
Since there are two sheets involved in this project, a schematic that is hierarchically
placed one level above them is needed to identify the interfaces between them.

24

Command and Data Handling System: Design and Development

T_bottom layer T_top layer

devices SCHDOC commectors SCHDOC
ICL SCL
D& D&

Figure 2.9: Top level schematic

The interfaces are as easy as can be seen in the figure above. Essentially only the two 12C
wires connect the main board devices with the subsystem boards. Not shown are the power
lines, such asthe 3V, 5V, GND, etc. They are interconnected by default.

Connector s Schematic

Although not indicated by the drawing, the nets with same identifiers are aso
interconnected by default. That means for example, that all lineswith a*5V’ identifier belong
to the *5V’ power net, which is going to interface all of those pins. In the upper left corner the
12C wireis pulled high (to 5V) with resistors (2.2KOhm) according to its specification [7]. All
connectors share the 5V, 3V, GND and I2C lines. The COM subsystem board and the
EPS/TCS board share additional lines for power (3V_E and 5V_E: both are always connected
to power, even in power-save mode) and two lines (A and B) for the emergency beacon
signal.

Due to increased stiffness two-part connectors are chosen instead of a card edge connection,
where the subsystem boards would be inserted in dlots.

SO G ST ATOTIT

g

|1| | |:: |__

HOT IR SO RIS

COM Heard EPSTOS ADCE Boad

Titks Eennane cfwes for COES

i | Compass

: i .
Figure 2.10: Connectors schematic

25

Command and Data Handling System: Design and Devel opment

Devices Schematic

The more complex circuitry of the devicesis given in figure 2.11.

Fadss R :.3'51 '1‘ §5"-~E

T

I
Figure 2.11: Devices schematic

26

o
B

i [[\i\ﬂ[tﬂgmr

u
o
- -.-.{

EsE-m T EFE

E iRk 5oE 6o }:-tHEEh

LEEREEER

THHH]

1l
T i
Esd

e

H

i
it
i
is
[5
)
Hh
PN o Bl
£
=2
é-l‘.
2[a s

Command and Data Handling System: Design and Development

The following section will describe the components in more detail and explain their
interconnections. Some fast guidelines to understand the schematic are given below.

- Theleft upper corner accommodates the de-coupling capacitors that ensure a constant
voltage level for the ICs because they compensate short fluctuations in the power
supply. In the placement process, they have to be moved towards their corresponding
|Csto work properly.

- Intheright upper corner isthe JTAG header that is used to program the MCU.

- The MCU is placed in the middle of the sheet and connects to virtually all other
devices.

- Asmass storage device, a Flash memory is chosen and can be seen in the middle right.

- The very left and the lower third of the sheet suit all the components that comprise to
the payload interface unit, i.e. the clock generator, the camera connector, the voltage
converters and the FIFO (from left to right).

The selection of the components has been performed at the previous phase B of the project.
Included in its definition there was a brief description of each component. The next
paragraphs will elaborate the components pin layout in more detail and lists the created nets
and interconnections.

2.3.3 Components Description and | nter connections

MCU [8]
The internal 128Kbyte Flash memory for the program code is being programmed via
the JTAG interface (TCK, TMS, TDI and TDO), which is accessible through a standard 10pin
header JP1 (figure 2.13). The programming

and debugging is done in-system, which o
means that the board will be programmed | ROAS
when all its components are assembled on it. e H
This also allows in-circuit debugging to verify s 777 i e sa
that the software works correctly with inter- m s R
facing the MCU with the other devices. MONEN i H
>F:::°”‘:':""".'_ I‘I.J.J M CLE FLAS
The /RST pin is pulled high via resistor to S 1 S
disable external reset, which would be | L e B i B
triggered if this pin is pulled low. ' o e T
& e 20 [l CECAM
Pin MONEN is tied low via a resistor to % 3;54 i' : Rﬁ[ﬂf:'m
disable the internal VDD monitor, which e v
would force areset if the supply voltage drops <3 o 27 [_or o
below a certain level. This may be a critical jommra o ol el
issue, but assurance of a constant voltage S =
level will be the responsibility of the EPS N) =i
subsystem instead of the CDHS. 1282 o RN
The other pins on the left side are not used r
and left floating. They are for analog and N
digital conversion, a feature that is not used
by the CDHS. Figure 2.12: MCU schematic

27

Command and Data Handling System: Design and Development

The upper and lower sides are connected to the power supply and ground.

On the right side the general purpose input/output pins (GPIO) are located which can be
configured according to their purpose by software. For the sake of an easy configuration, the
two first pins of port O are assigned to be the I2C interface (i.e. P0.0 and P0O.1). Therest of port
Oisleft open.

Port 1 and 2 control the functions of the other devices. A description of the acronymsis given
in the table below. Please refer to the particular components pin description for more details
on its function.

Pin | Net Name Interfaces | Function
with
P1.0 | CLE FLASH Flash COMMAND LATCH ENABLE

The CLE input controls the activating path for
commands sent to the command register. When
active high, commands are latched into the
command register through the 1/O ports on the rising
edge of the /WE signal.

P11 | ALEFLASH Flash ADDRESSLATCH ENABLE

The ALE input controls the activating path for
address to the internal address registers. Addresses
are latched on the rising edge of /WE with ALE
high.

P1.2 | /IWE FLASH Flash WRITE ENABLE

The /WE input controls writes to the /O port.
Commands, address and data are latched on the
rising edge of the /WE pulse.

P1.3 | /CEFLASH Flash CHIP ENABLE

The /CE input is the device selection control. Note
that when the deviceisin the busy state, /CE highis
ignored, and the device does not return to standby
mode in program or erase operation.

P14 | /REFLASH Flash READ ENABLE

The /RE input is the serial data-out control, and
when active drives the data onto the 1/0 bus. Datais
valid after the falling edge of /RE which also
increments the internal column address counter by
one.

P15 | R/B FLASH Flash READY/BUSY OUTPUT

The R/B output indicates the status of the device
operation. When low, it indicates that a program,
erase or random read operation isin process and
returns to high state upon completion. It is an open
drain output and does not float to high-z condition
when the chip is deselected or when outputs are
disabled.

P1.6 | RCLK FIFO FIFO READ CLOCK

When enabled by /REN, therising edge of RCLK
reads data from the FIFO memory and offsets from
the programmabl e registers.

28

Command and Data Handling System: Design and Development

P1.7

CE XCLK

External
Clock

CHIP ENABLE
Triggers the transistor that is used as a switch to turn
on the external clock oscillator.

P2.0

CE CAM

Camera

CHIP ENABLE
CE high activates the voltage supply (2V5) for the
camera module.

P2.1

RST CAM

Camera

RESET
Resets the chip when active high.

P2.2

VSYNC CAM

Camera

VERTICAL SYNCRONIZATION
VSYNC high indicates that a new frame is being
transmitted.

P2.3

ICE FIFO

FIFO

CHIP ENABLE
/CE low activates the voltage supply (3V3) for the
FIFO.

P2.4

/IRST FIFO

FIFO

RESET FIFO
/RST low initializes the read and write pointers to
zero and sets the output register to all zeroes.

P2.5

WEN FIFO

FIFO

WRITE ENABLE

WEN enables WCLK for writing data into the FIFO
memory and offset registers. Refer to payload
interface unit for details.

P2.6

/REN FIFO

FIFO

READ ENABLE
/REN enables RCLK for reading data from the FIFO
memory and offset registers.

pP2.7

IOE FIFO

FIFO

OUTPUT ENABLE

/OE controls the output impedance of the pins
connected to the data bus [DO-7]. When high, the
output data bus goes into a high-impedance state.

The pins of port 3 are the data bus that connects the MCU, the Flash and the FIFO with each
other. It is an eight bit bus system that is used to transfer the image data stored in the FIFO to
the Flash and to send command and address information from MCU to Flash.

WIS
JiE]

0
TCK

.|||_

Figure 2.13: JTAG schematic

29

Command and Data Handling System: Design and Development

Mass Storage Flash Memory

The Flash device from Samsung [9] is the non-volatile memory solution that stores the
images taken by the camera module together with the housekeeping data from the various
subsystems and other system information. The chip is offered in 16Mx8bit which yields to a
total capacity of 128Mbit. The 1/O pins serve as the ports for address and data input/output as
well as command input. The on-chip write control automates all program and erase functions.
It has an extended reliability of 100K program/erase cycles, which makes it suitable for this
write-intensive application.

The 1/O pins are used to input command, address and data and to output data during read
operations. The I/O pins float to high-z when the chip is deselected or when the outputs are
disabled.

CLEFLASH 2 | oo 00
ALE ILASH 3 [_,,‘ll':_' =it :E;I,J
WE HAST do WE 1oz
CE H.ASH 455 # :E;i
RE H_ASE 0w s
a1 E

BB FLASH (He1]

Figure 2.14: Flash schematic

It is connected through the 8 bit data bus D[0..7] with the MCU and the FIFO device. The
‘R/B FLASH’ wireistied high via aresistor of 10kOhm because it has an open drain output
that goes low when the chip is busy.

For explanation of how the chip works, figure 2.15 illustrates the internal memory
organization of the Flash memory. After aread command has been input, there are three more
cycles required to address a singly byte. The first cycle with one address byte (AO...A7) isfor
horizontal position. By this, bytes 0 to 255 are addressable. To address the following bytes
256 to 511 adifferent command code is used.

The second two cycles address the vertical position, i.e. the page number. There are 32K (that
is 32768 or 2'°) pages, hence requiring exactly 15bit for addressing (A9...A23).

Summarizing, the Flash is controlled by the MCU in terms of commands and address

information and gets most of its content from the FIFO, which is interconnected to the data
bus and holds the images from the payload.

30

Command and Data Handling System: Design and Development

1 Block =32 Pages
= (16K + 512) Byte

1 Fage = 528 Byte
1 Block = 528 Byle x 32 Pages
32K Pages = (16K + 512) Byte

a4 A e 1st half Page Registar 2nd half Paga Registar R - .
(=1,024 Blocks} | oo e 1 Device = 528Bytes x 32Pages x 1024 Blocks
= 132 Mbits

& bit

| Page Reqgister]
512 Byle e 16 Byte

/oo 1o 1 o2 110 3 1o 4 1o 5 10 6 o7

1st Cvele Ao A Az A3 Aa A5 AB AT Column Address
Row Address
{Page Address)

2nd Cycle Aa Ao A Az Az Aid A5 A6

3rd Cycle AT Ats A19 Azo Azt Az2 Aza L

Figure 2.15: Flash internal memory configuration

Payload I nterface Unit

Involving the mgjority of ICsin the CDHS circuitry, the payload interface unit is more
complex to handle. The reasons for the big number of involved devices are the special voltage
requirements for the camera and the FIFO, the triggering of the FIFO [10] viaa NAND [11]
gate and the need for an external clock oscillator circuit to drive the cameras clock signal.
This is due to the very fast output of the data from the camera module, which is too fast for
the Flash to be handled, thus device that is able to fetch and buffer an image becomes
compulsory. Thisis done by the FIFO.

The signal flow starts at the camera connector. =
As can be seen, the connector (which is going to

be a 20pin connector) is connected to GND (pin o
1 and 15) and to a 2V5 power supply from the e

i3

voltage regulator. Pin 4 is the power down : e
switch and is tied to GND to disable it. The 4
camera will be qllsconnected from power supply S~ ’7
when not operating. * o
T - SCL
VSYNC is usually low and indicates the start of 5 (jﬁ
anew frame when it shortly peaksto high. Refer " 5
tofigure 2.17. " 1
17 =
1=
HREF CAM when high shows that data bytes 1
are available at the output bus C[0...7]. It TR 20M

remains high for al data bytes of a horizontal
row. Refer to figure 2.18.

Camen connec ke RET CAM

The cameramodule is programmable via I2C interface.
Figure 2.16: Camera connector
schematic

31

Command and Data Handling System: Design and Development

- 525 &
VSYNC .
4 F
3tri-:-r.' — st 11tmvn - M tm;pl
— TE4 ., |-—
HREF J |
G40t e - s 124t
VI7:a] (invalid Data] T (T T ¢ TTE=I11invaiia bataj
Row 0 Row 1 Row 2 Last Row

Figure2.17: VGA timing diagram

-d—tP:-LH.

o NS T
nnag

T, —
45
HREF] (Row Data)

tI-I:l
¥[7:0] XLast E::-.-TQX: Eyta x K XLa st E.y'te-X
§ 5
T

First
—_—

Figure 2.18: Row output timing diagram

The camera will take VGA images and operates therefore with 30fps. Thus, asingle frameis
obtained within 1/30 seconds. From the values in the above figures t,o, and tec x can be
calculated:

1/30s=525*t,,
t_ »63ns

row

trorw = 640* tPCLK
tock =99.2ns Q)

The XCLK CAM pin is the input for the clock signal, which is generated externally as
described in the following.

32

Command and Data Handling System: Design and Development

EL)

s 13
[o0er s [ore vee

VCCD

ol ea| b3

TAME

. VREF
——| G

» - = GO FOoLT
J—['D L[H J_l'”

MO IEIEL 1645100
[[EimS I5iiinF liinF

4 MCLK CAM

al

R16 CEXCLE
il

MMBT 2360071

Figure 2.19: The external clock circuitry

The above shown circuitry outputs aclock signal at the XCLK CAM line when the CE XCLK
is high. The frequency of the clock signal is set by the following equation:

fo

_ 1
2L *C;

With the chosen values of Lt = L1 (1puH) and Cy = C10 (180pF), this yields to a resulting
frequency of

fo” 11.863MHz ()

This is in the lower range of the allowed frequencies (minimum is 10MHz) to drive the
camera. All other conductor and resistor dimensions are specified by the chip's
documentation [12]. The duty cycle of this device is specified with 50%.Note that the device
IS connected to the 5V power supply.

Below are the two voltage regulators, the ZXCL 250 and the ZLDO330 from Zetex [13], [14].
Both require several capacitors to work properly. They are connected to the common ground
plane and both are selectable via an input pin. The regulator for 2.5V is activated with CE
CAM high, whereas the 3.3V regulator needs alow on /CE FIFO to run.

33

Command and Data Handling System: Design and Development

V5

CE HFO
uz 14
Ll 14
-
L saw v 2 - ey spa “4”—«.
_ e L snlse Gwn .
CECAM = | 3] 5 & 10}
o BN W A S T o i H
w2t Wi voun ¥
Cle TR R
—] =17 9 FAREREET] 1
Il el S 16iiinE lnF

e

Figure 2.20: The voltage regulatorsfor FIFO and camera

The 3.3V regulator supplies the FIFO with power and thereby controlsif it ison or off. Thisis
why the wireislabeled CHIP ENABLE FIFO (/CE FIFO).

The device with the most interconnections is the FIFO and is shown below.

PCLE CAb

1
WEN 0RO 1
2 BET FIFO

HEEF CAM 2 2 RCLKFIFD
zl REM FIFO
14 g%i OF FIFC

0n

Jl'muumm B

Rl el

oogoogogag

LA

Figure 2.21: The FIFO interconnections
Again, top and bottom sides are connected to the 3V 3 supply from the regulator and to the
common ground, respectively. The /PRS (PARTIAL RESET) is deactivated by pulling it high
via a resistor. The input for the WCLK (WRITE CLOCK) comes from the camera, which
outputs a PCLK (pixel clock) of

Utpcik ~ 10MHz 3

34

Command and Data Handling System: Design and Development

Refer to equation (1) for tpc k Value.

The FIFO can be written to when the /WEN pin is low, which is realized through a NAND
gate that goes low only when there is a high on the WEN FIFO line from the MCU and a high
on the HREF line from the camera. The NAND is supplied with 3V olt constantly.

The 8hit output from the camera is transferred to the FIFO input ports via the data bus
C[0...7]. The ninth bit (D8 as well as Q8) is disabled and pulled to ground. The same is true
for the other features which are not being used. They are disabled by either tying them high or
low, according to the specification.

A reset of the FIFO can be triggered by driving alogic one on the /RST FIFO line. The RCLK
FIFO (READ CLOCK) dictates the speed data is read out and put on the data bus D[O0...7]
when simultaneously the /REN FIFO islow.

Finally the /OE FIFO line is used to set the data bus in a high impedance state when pulled
high. Doing so will alow the MCU to program the Flash via the data bus and without
interfering the FIFO data.

2.3.4 Transition from Schematic to PCB

To transfer alogical drawing as the schematic is, into a physical one, the symbol and physical
properties must be linked to each other. Part terminations defined in the symbol are assigned
pin numbers and interconnections between them are assigned net names. The same pin
numbers are used in the physical part definition and, together with the interconnection data
from the schematic, establish a net list that will be used to define how the parts placed on the
layout are to be interconnected. These interconnections will be displayed as a so-called rats
nest and later on translated into conductor paths during the routing activity.

As said, the basic information for a transition of a schematic to a PCB derives from the
libraries that combine the symbol and the physical properties (in form of a footprint) of each
part together. For some parts however, there were no standard footprints in the library and
they had to be created manually. They are included in the appendix for reference. A table with
all parts to be mounted on the board can be found in the appendix as well. It is the so-called
Bill of Material (BOM).

All parts are surface mount devices (SMD). Only the connector for the JTAG and the
subsystem board connectors are through hole. The latter require more stiffness, which would
not be provided by SMD.

2.3.5 Part Placement

The placement of the devicesis one of the most critical layout activities as it has a significant
influence on how (and if at all) aboard is completely routable. The mentioned rats nest serves
asagood identification of too jam-packed areas, which should be avoided.

The first major decision for each part was whether to place it on the top or on the bottom side

of the PCB. This was not a question for the subsystem board connectors however as there
location is defined by integration issues discussed in the mechanical definition part.

35

Command and Data Handling System: Design and Development

Ultimately, due to expected better shielding effects the majority of devices (al 1Cs and many
passive parts as well) are located on the top layer.

Also in terms of thermal control it should be the best solution, as the satellite will generally
get too cold instead of too hot (please refer to the results from the preliminary thermal
analysis). Each component radiates a small amount of heat. When components face each
other, the hotter one will reduce its temperature by radiating it to the colder one.

Figure 2.22: Placement on top side Figure 2.23: Placement on bottom side

The above figures display the chosen component placement for the engineering model of the
CDHS board. There is till room for changes and most likely the subsystem board connectors
will have to be moved a little bit for the next model due to structural reasons. This will
however not be a big problem. The shown configuration is the result of an iterative process
and by no means claims to be the one and only solution.

2.3.6 Routing

The placement and routing activities are deeply interwoven with each other and changes on
one affect the other notably.

Initially the autorouter has to do the routing job. But before that some specific tracks were
done by hand. Those were the power supply lines and the system bus lines, which run in
paralel on both sides and interconnect with each connector. Although the autorouter finished
the entire board, the result was not satisfying from the aspect of maintainability and clearness
of the board. A test board was manufactured, too. After that, each and every track was routed
manually. The results can be seen in figure 2.24 and 2.25.

Since all prototype boards are manufactured in-house at the workshop of the FH Aachen, the
following design rules for PCB layout were taken into account:

- minimum track width: 8mil
- minimum clearance; 8mil
- viastyle: hole size of 20mil, shape size 40mil

36

Command and Data Handling System: Design and Development

Figure 2.24: Routing of top layer Figure 2.25: Routing of bottom layer

2.3.7 Design Verification

The routed board was checked with the design check option of the Protel2004 software.
Short-circuits and other mistakes were not detected. This is aso due to the online check, that
is active al the time and avoids the introduction of errors already in the design activity.

Thus the hardware design part is theoretically error-free.

2.4 Development Activities

As soon as the PCB design has finished and the design is verified, the files can be sent to the
fabricator for production. It would also be possible to produce a self-made board but this
option was not considerable as the FH Aachen has a dedicated laboratory for that. The find
model is most likely being produced externally to ensure best possible quality.

2.4.1 Board Fabrication

The PCB manufacturing itself is the first step in the development activity. As mentioned
aready, the FH Aachen has facilities for board production. This includes a milling machine
that can realize a minimum track width of 8mil, which is a the same time the smallest
footprint that appears on the CDHS board. The workshop also provides the copper plates and
cutsit according to the given dimensions.

It isavery convenient process, as the only thing to be done was to send the design files (saved
as Protel 99) viaemail to the workshop. The result is shown in figure 2.26.

37

Command and Data Handling System: Design and Devel opment

Figure 2.26: The engineering model of the CDHS board

2.4.2 Soldering

The soldering activity is a more delicate one, because it needs a person with good experience
in that field. It is going to be done by one of my fellow students. The necessary tools and
equipment are all available at the electronic workshop.

2.4.3 Inspection and Testing

Inspection of the soldered components has to be conducted to check for any type of failures,
such as broken connections, short cuts, etc. Most of them will be identifiable with the naked
eye. Others might be too small and may only be detectable with help of a voltmeter and other
instruments.

Next to the necessary hardware test that are specified in the CubeSat documents, the board as
awhole will have to endure additional tests, set by the Compass-1 group.

The results of the testing will be documented separately.

38

Command and Data Handling System: Design and Development

3. Software

3.1 Overview

The flight software is the core item of the CDHS. It brings the devices ‘to life' and utilizes
their features. Software programming for the CDHS refers to the development of the program
code that is being stored in the MCU.

The program code has to accommodate the various mission modes of the spacecraft as
illustrated in figure 3.1. During boot, the MCU initializes the other devices and goes into a
pre-defined state. Then the nominal mode is active, in which the CDHS interacts with the
COM subsystem, the Payload and the ADCS. When in power save mode, the CDHS is off.
No code will be executed at this time. As soon as the EPS switches from power save into
normal mode again, the boot procedure is passed through again.

Kill Swiich ,| EPS Boot |,
releare
¢ ¢ - F*
L
COM ADCS CDHS E E
Boot Boot / De- Boot e =
= =
& E
T T T hoot g '5

EPSITCS

Figure 3.1: The mission modes
Rather than using a real-time operating system a designated kernel is going to be programmed

that will keep the resulting code compact and small in size. Also it can be furnished much
better to the hardware on the lowest level.

39

Command and Data Handling System: Design and Devel opment

3.2 Integrated Development Environment (I DE)

For the chosen MCU (the C8051F123 from Silicon Laboratories) there exists a development
kit that comprises of atarget board and a complete solution for software development using a
Windows PC. The target board is in-system programmable (alike the CDHS will be) and can
be used to verify and debug code modules. Essentially, the integrated development
environment (IDE) is a complete, standalone software program that provides al the tools
needed for devel oping and testing. Quoting the product package [15]:

“A full-version Keil A51 macro assembler and BL51 banking linker are included with the
development kit. Also an evaluation version of the Keil C51 ‘C’ compiler is included. The
evaluation version of the C51 compiler is the same as the full professional version except
code sizeislimited to 4K bytes and the floating point library is not included.

The Cx51 Optimizing ‘C’ Compiler from Keil Software is a complete implementation of the
American National Standards Institute (ANSI) standard for the ‘C’ language. Cx51 is not a
universal ‘C’ compiler adapted for the 8051 target. It is a ground-up implementation
dedicated to generating extremely fast and compact code for the 8051 microprocessor. The
‘C’ language on its own is not capable of performing operations (such as input and output)
that would normally require intervention from the operating system. Instead, these capabilities
are provided as part of the standard library. Because these functions are separate from the
language itself, ‘C’ is especialy suited for producing code that is portable across a wide
number of platforms. Since Cx51 is a cross compiler, some aspects of the ‘C’ programming
language and standard libraries are altered or enhanced to address the peculiarities of an
embedded target processor.”

GR e R G ek e e R
el wmE S mnAs

ol . ‘. _. Lo
. 7 r s

Figure 3.2: Thetrget'bod assembly

40

Command and Data Handling System: Design and Development

3.3 Design and Development Activities

Figure 3.4 depictures the process that will eventually lead to the complete program code of
the CDHS. To start with, the environmental parameters of the CDHS must be defined. This
includes the idea on how the software shall be structured, i.e. the number and purpose of
hierarchic levels. The flowchart design furthermore needs information on how the memory is
organized and structured. Finaly, the system bus design will provide with details on how to
exchange commands and data with other subsystems.

Memory
Organization

Software
Structure
Desian

System Bus
Design

Flowchart
Design

A 4

Transition of
flowcharts to code

A 4
Programming
of sub modules

Figure 3.4: The software design and development activities

3.3.1 Software Structure

The design of the program code is carried out in a strict top-down approach. Intentionally, not
much attention had to be wasted on the technical details of the devices implemented on the
board, but rather the software functions and tasks were put in the center of concerns.

By doing so, an abstractive and therefore transferable flight software code can be realized.
Figure 3.5 illustrates the software layer design for the flight software. The application layer
covers the main program code written in ‘C’. Also al other levelsarein ‘C’ but they make us
of the integrated standard library which is hardware specific to the 8051. The device interface
layer is the middle layer between the application layer and the low level drivers and acts as
logical representation of the hardware. Thus, changing the hardware (respectively parts of it)
can be done, based on an appropriate modification of thislayer’s modules.

41

Command and Data Handling System: Design and Development

Figure 3.5: The software layer design

3.3.2 Memory Organization

There are three distinguishable types of data that are going to be stored in the mass memory
unit of the CDHS. Those are the payload data (images), the housekeeping data (information
from various sensors and subsystems) and the system data (status information of the CDHS).
Even so the system information will be sent to ground together with the housekeeping data
and as such could be referred to as the ‘housekeeping data’ of the CDHS it has a more
important objective then just giving status information of the system. In fact, the system
information holds such essential values as the image pointer for example, which indicates the
next free slot for when a new image has to be stored. More information on that can be found
in the documented program code.

The logica memory configuration, that means the way the memory is being addressed in
software, is based on the hardware solutions. The bus width of the device has a big influence
on how a single byte can be addressed. The Compass-1 MCU is an 8051 derivate and as such
it uses 8 bit bus structure. Thus, only eight lines (8 bit alows 256 combinations) are available
for addressing the Flash memory, which in this case is 16Mbyte. The solution here is to write
to the bus severa times sequentially (in cycles), latching it into the address buffer of the
device (which is done automatically) and thus increasing the number of addressable bytes.

The mechanism explained above works for the Flash device that is being implemented as the
mass storage memory on the CDHS board. It uses three cycles for address latching. The first
eight bytes refer to the byte position in the page, whereas the following two cycles determine
the block (asin figure 2.15).

Figure 3.6 illustrates the configuration, which is alayer stack of blocks, with each block made
of by a number of pages. And each page is made up by a number of bytes.

In figure 3.7 a closer look is taken to the configuration of the image dots. It can also be seen
how the pages and blocks approach contribute to the clearness of the memory arrangement.

42

Command and Data Handling System: Design and Devel opment

Image Segment

Housekeeping

A 4

Segment

Sys Segment

»

Figure 3.6: Memory organization

1 Image Slot = 20 Blocks

32 Pages

1 Block

1 Pages = 512 Bytes

Image Slot #2

Image Slot #1

Image Slot #0

Housekeeping Data

System Information

Figure 3.7: Theimage slot configuration

43

Command and Data Handling System: Design and Development

3.3.3 The System Bus. Command and Data Traffic

Subsystems communicate with each other via the system bus. The chosen bus concept is the
12C bus from Philips [7]. It is a multi-master bus, which means that every bus participant can
be a Master, just by initiating atransfer. The bus uses only two lines, one for data and one for
clock to synchronize transfers. The transfer rate is gradually up to 100kbit/s.

All subsystems that require the exchange of data/lcommands via the system bus (those are the
ADCS, COM, CDHS and EPS) have an MCU that supports the 12C standard by hardware
connected to the system bus. The initial ideato connect the majority of devices to the system
bus (such as the various sensors) was eventually discarded, since it would increase potential
error sources.

This is the major drawback for that bus. Since all members are wired-AND connected, a
failure where one device pulls the bus lines to ground permanently will demolish bus
communication. So, other devices than the subsystem MCU'’ s shall be avoided to be plugged
to the bus to minimize this risk.

WOD = 5V VDD = 3V VDD = 5V VDD = 3V
Master Slave Slave
Device Device 1 Device 2

SDA

SCL
Figure 3.8: 12C isa multi-master bus that supports devices
running at different voltage supply levels.

Communication M odes

The chosen 12C bus supports a total of four modes of communication. For convenience
the CDHS will be restricted to make use of two modes only. Those are Master-Transmitter
mode and the Slave-Receiver mode.

- Master-Transmitter: An MCU initiates a transfer by writing on the bus. It
automatically becomes the Master for this transfer and transmits the data in packets.
After each data packet sent, it waits for the Slave to acknowledge it.

- Slave-Receiver: Any component that is addressed by another device via the bus will
become the Slave for this transfer and receives the data. Each single data packet hasto
be acknowledged by the Slave, otherwise the transfer terminates.

Protocol Format

The Master initiates the transfer by first claiming the bus when it’s free. This is done
by writing the 7-bit address of the Slave (the device to be addressed) on the bus. All data
packets written on the bus have to be one byte long (8 bit), thus the lowest significant bit
(LSB) of thefirst packet is used to determineif it isaread or write transfer. Since we only use
the Master-Transmitter mode, itisaways ‘0’ for ‘write'.

44

Command and Data Handling System: Design and Development

The dave address is a 7 bit unique code for each device. The address with seven zeros
(0000000’) triggers a genera call to al devices. Each MCU most be programmed if it shall
respond to this general call or not. For Compass-1 there was no need to make use of this
feature.

When the Slave acknowledges, the Master can continue with the transmission of the next
byte. If there is a‘not-acknowledge’ on the bus or no acknowledge at al after some time then
the transfer could not be initiated and the bus is freed again.

The next byte that the Master will put on the system bus in case of an established
communication with a Slave is the ‘command code’. The command code is an approach to
structure the system bus communication. It is a dedicated protocol for Compass-1 on top of
the 12C bus protocol.

S | Slave Address W [A CC A Additional Data A -

------------------------ Additional Data A P

S= START

P = STOP

A= ACKNOWLEDGE
W=WRITE

CC = command code

Figure 3.9: The protocol format for Compass-1

Command Codes

A dedicated protocol has been elaborated to cater the needs of the Compass-1
command and data exchange. It is shown in the above figure 3.9. The second byte to be
transmitted on the bus contains the so-called command code. This is a data byte that informs
the Slave about what it shall do and how much additional data the Master will send (if at al).
Theoretically 256 commands are possible with this method. Since only a fraction is actually
needed, the command codes can be spaced widely from each other. By doing so, the
likelihood of a bitflip changing a valid command into another valid command is much less.
Since the command always also identifies which two participants are involved, it turns out to
be a highly effective and secure technique. The table of command codes can be found in the
appendix.

Address of Devices

Each participant in the bus system is given a unique address. This might be done by
the manufacturer or can be adjusted manually in hardware or even by software. Thereisaso a
genera call address that can be used to attend to all participants of the bus. This might be
helpful if the address of a specific component is not known or unidentifiable. Since the
command codes are unique for each subsystem, the COM MCU for example will not carry
out a command that is meant for the ADCS MCU. Nevertheless, the general calling address
feature needed not to be used for the Compass-1 spacecraft.

45

Command and Data Handling System: Design and Development

Starting a Communication

The initialization of the bus communication (MCU to MCU) is an active event. That
means that it isimplemented at some parts of the program code and proceeds according to the
specification given above. Thus the Master ‘knows at what stage the bus communication
takes place from his side. In order to not confuse the MCU by interruptions, the interrupt
service routine (1SR) is disabled during that time.

This approach is straight-forward, with a Master sending command/data to a Slave. But what
about the cases the Master expects data from the Slave (for example it asked for house-
keeping information from its sensors)? First the Master sends the respective command to the
Slave to get data. Then the Master enters a polling loop that waits until the Slave reacted with
the correct command code and is then able to receive the data from the bus. Now the former
Master becomes the Slave and vice versa. During polling by the Master the Slave might be
busy collecting the data, but for al this time the bus is free and can be used by other
participants. It should be noted again that during this time the ISR is disabled, otherwise the
MCU would respond to other requests on the bus and this would corrupt the data transfer.

Receiving the Communication

When a Master correctly addresses another participant, who is not busy
communicating via the bus at this time (e.g. ADCS MCU addresses CDHS MCU), the Slave
MCU suspends its current activity and executes the interrupt service routine. It evaluates the
command code and does the necessary actions. When finished, it returns back to the code line
where it was just when the interrupt occurred.

The ISR (also called interrupt handler) of the CDHS will trigger status flags in the memory of
the MCU that will cause the task manager of the main program module to run its respective
sub-module.

3.3.4 The Task Manager

There is anumber of software functions (tasks) assigned to the CDHS to be carried out during
mission operation. The task of collecting housekeeping data is autonomous and done on a
periodical time basis. The other tasks are triggered via commands sent through the system
bus. The origins of those commands so far are either the ADCS subsystem or the COM
subsystem that relays the commands coming from the ground station. From the previous
phase study, five different tasks evolved that are necessary to accomplish the mission
objectives. They are listed in the table below, together with the corresponding status flag and
the respective module name.

Variable Function Description

flag update adcs | func_update adcs() | Update ADCS parameter
flag_send_hk func_send hk() Send HK to ground
flag_send img func_send_img() Send stored image to ground
flag make img | func_make img() | Capture and send image
flag_run_adcs flag_run_adcs() Switch ADCS on/off

As said, the flags will indicate whether a task shall be carried out or not. Once the task is
completed all flags will be cleared in order to go back into a defined state.

46

Command and Data Handling System: Design and Development

3.3.5 Flowchart Design

In the following the flowchart diagrams for the top and the middle layer of the software
structure are elaborated. The corresponding code is listed in the appendix (which is the
transition of the flowchart into program lines). The lowest level consists of modules which are
also included in the appendix.

Top Level —Application Layer

(BEGIN)
The program starts when

v the CDHS is supplied with
Initialize counter electrical power.
and task flags

The boot sequence ensures

Reset the | that the system will return to
MCU a pre-defined state after
v booting or re-booting the
! - ! CDHS. These modules are
! Initialize the Boot-Upthe: 15 qware depended as it has
memory Components: to take into account the MCU
i RaanEREEELEEE SRR LR EERLerE ' architecture and its features.
A 4
Check task
flags

\ Task Manager:

Is a flag Execute the The loop
set? particular task continuously
and reset checks if any of
flags > the flag is set. If
So, it executes
the
Increment | corresponding
counter function.
J
yes Reset counter The counter

determines the
delay between

no Y the collections of
p Collect housekeeping
Housekeepin data.

Command and Data Handling System: Design and Development

The starting point labeled BEGIN is entered each time the CDHS gets switched on or re-
booted respectively. A re-boot is triggered by either the internal watchdog timer that forces
the MCU to restart when it has not cleared the timer flag within a set time frame. Another
way to boot the CDHS is obviously to switch off and on the power supply, which can be done
by the EPS (for power-saving or in case of a latch-up). As soon as the MCU and the other
devices are connected to the power supply, they will go into an initial state, which is mainly
configured by the hardware wiring of their pins and their logic levels. The initial state (right
after the BEGIN block in the flowchart) of the chosen C8051F123 MCU from Silicon
Laboratories in consistency with the engineered PCB is as follows:

internal oscillator runs with 24.5MHz

system clock is 3aMHz

watchdog timer is activated and its timeout is set to ~350ms
program execution starts at 0x0000

Although the other devices on board the CDHS show specific start-up characteristics, only the
MCU will need to run a boot sequence, as it is in control of the other devices. Their system
state will depend on the arrangements set within this code. The boot sequence stands at the
beginning of the program code so that it will be executed first.

When finished with the boot sequence, the MCU enters (and remains) in the infinite main
loop.

It continuously has to reset the watchdog timer in order not to trigger a forced re-boot, checks
the task manager and collects housekeeping data on a pre-defined delay basis set by a value
for the internal counter. The task manager keeps track of the commands to be carried out by
the system. It is more a scheduler rather than a resource managing device. Principally it works
on a first-come-first-serve basis. The task manager ensures that each task is given full
attention and that no other tasks can interfere within its execution. Thus peak power
operations, with many subsystems involved are avoided.

Middle Level — Device L ayer

The middle layer tranglates the functions of the application layer into device-specific
functions. They are still to be kept abstract in a way, as that the devices could be replaced by
other models of the same product family with same functions. Not what happens inside the
chip or component is of interest, but what goes in and what comes out!

For the six functions that appear in the application layer mode (refer to the appendix) the
following flowcharts have been generated. After that, the flowcharts were translated into
code. Those functions are:

func_send_hk() Send the stored housekeeping & system data to ground
func_update adcs() Update the ADCS settings

func_send_img() Send an image to ground

func_make img() Capture an image and then send to ground
func_run_adcs() Switch on/off the ADCS

func_collect hk() Gather new housekeeping data

VVVYYY

48

Command and Data Handling System: Design and Development

Switch on Flash

v

Establish System Bus Communication

>

I
) 4 Send byte to COM

7y

Read Flash HK byte

All HK
bytes sent?

|
Send byte to COM

A
Read Flash SYS byte

All SYS
bytes sent?

Stop System Bus Communication

v

Switch off Flash

(func_update_adcs() >

v

Establish System Bus Communication

A

All no

parameter Send byte to ADCS
updated?

yes

\ 4
Stop System Bus Communication

RETURN

Command and Data Handling System: Design and Development

v

Verify requested image number

v

Switch on Flash

v

Establish System Bus Communication

d
A |

Y Send byte to COM
A

Read Flash byte

All image
bytes sent?

Stop System Bus Communication

v

Switch off Flash

< func_run_adcs() >

v

Establish System Bus Communication

v
Switch on ADCS

v

Stop System Bus Communication

»
»

Y

Time limit
exceeded?

Establish System Bus Communication

v
Switch off ADCS

v

Stop System Bus Communication

ADCS still

Increase time counter busy’?

50

Command and Data Handling System: Design and Development

Transfer image
from FIFO to
Flash block by
block

<

v

Verify free image slot

v

Switch on external Clock

v

Switch on FIFO

v

Switch on and program camera

v

Wait for next image from camera

v

Load bytes into FIFO

v

Wait for end of image

v

Switch off camera

v

Switch off external Clock

\ 4
Switch on Flash

v

Erase Flash image slot blocks

»)

Buffer one image from
camera into FIFO

Y

Full image
stored?

Switch off FIFO

v

Switch off Flash

\ 4

Call func_send_img()

v

Increase image counter

RETURN

51

Program Flash block

7y

Transfer block from FIFO to Flash

Command and Data Handling System: Design and Development

Save the
system
information in
the Flash

(func_collect_hk() >

v

Switch on Flash

v

Erase Flash HK block

v

Establish System Bus Communication

v

Send command to EPS

v

Stop System Bus Communication

v

Wait for response from EPS

1
«

Y

Write byte to Flash

7y

All EPS
HK stored?

Read byte from bus

Establish System Bus Communication

v

Send command to ADCS

v

Stop System Bus Communication

v

Wait for response from ADCS

1
«

Y

All ADCS
HK stored?

Write byte to Flash

7y

Read byte from bus

Program Flash block

A 4

Erase Flash SYS block

v

Write system data to Flash

v

Program Flash block

v

Switch off Flash

52

Save the
housekeeping data
from the EPS and
the ADCS in the
Flash

Command and Data Handling System: Design and Development

3. Budgets

Each of the seven subsystems of Compass-1 has been assigned with numbers for the mass, the
power consumption and the costs that specified the available limit of that resource. No
subsystem shall exceed those limits; the better case would be to stay below as much as
possible. The budgets had to be handled very stringent because for a student picosatellite
project, all those resources are very constrained.

3.1 Power

A CubeSat has a strict regulation on available power. Having in mind an average of 1\Waitt
that is constantly offered for the total system, the CDHS has to be satisfied with only a
fraction of it, i.e. an average of 60mW. The following table lists the electrical devices on the
board, their maximum consumption and the estimated fraction of time (based on one orbit)
that they are active. It was assumed that the Satellite is accessed from ground two times each
orbit and always captures and transmits an image to ground.

Maximimum Operation Average

Identifier Item Definition Power (mW) Time (%) Power (mW)
Ul MCU C8051F123 6,00 100 6,00
U2 Flash K9F2808UIC 60,00 22 13,33
U3 Clock Osc. MC100EL1648D 95,00 6 5,28
U4 Vol. Reg 3V3 ZLDO330 3,15 11 0,35
U5 FIFO IDT72V2111 165,00 11 18,33
U6 NAND CD4011BCM 0,03 100 0,03
u7 Vol. Reg 2V5 ZXCL250 0,15 6 0,01
Q1 Transistor MMBT2369LT1 9,00 6 0,50

losses 5,00 100 5,00

margin 10,00 100 10,00

TOTAL 347,33 58,83

The CDHS board was constrained to a maximum weight of 70g, which includes the board
itself, the assembled devices and connectors. The total weight, which was measured for the
EM board yielded to a mass of 46g only. The figure shows how this value is composed by the
different component groups.

devices; 4

solder; 5

connectors; 8,7

PCB; 28,4

53

Command and Data Handling System: Design and Development

3.3 Costs

The earlier estimations of the costs for the CDHS board produced an uncertain value. The EM
production was in-house and therefore free of charge. The components however had to be
ordered and paid. The problem here was that most of the formerly selected up-to-date 1Cs
were primarily intended to be used in mass market applications and therefore only delivered
to OEM customers that order huge quantities. Fortunately many suppliers showed themselves
being very co-operative and gave out small numbers as samples. This helped to reduce costs
massively. Summarizing, the majority of devices as well as the Protel license had been
donations, which contributed to the astonishing cost reduction for the CDHS board.

Command and Data Handling System: Design and Development

4. Risk Analysis

The prototype design of the CDHS board, which will compose the engineering model of the
Compass-1 satellite together with the other subsystem prototype boards, was done with best
knowledge and expertise of the involved students at that time. During the design and
development, the understanding of the chosen subsystem area increased enormously. This
was and is one of the key objectives of such a hands-on project. Reviewing the decisions and
selections that were done several months ago, optimizations would be possible in terms of
design modifications or by using other components. But we have to stick to the design in
order to keep the deadlines and to proceed with the project. Thisis alesson worth to learn, as
the industry with its long-term spacecraft projects of 5-10 years are facing such issues even
more.

On the other hand, aspects that have critical impact on the mission success could be found
with the prototype model, which were not so obvious from the beginning. Those problems
where found by the help of a Failure Mode and Effects Analysis (FMEA) for the hardware
and software. The risk assessment can be done based on this analysis and the suggested
countermeasures have to be implemented in the further design of the succeeding board model.

The FMEA introduces specific parameters to support the identification of critical problems.
Those are:

D Critical characteristic which may effect safety, compliance with CubeSat/launcher
regulations, or require special controls.
SEV Severity rating (1 to 10)
OCC Occurrence frequency (1 to 10)
DET Detection Rating (1 to 10)
RPN Risk Priority Number (1 to 1000) ; RPN = (SEV) x (OCC) x (DET)
A 1000 rating implies a certain failure that is hazardous and harmful
A 1rating isafailurethat is highly unlikely and unimportant
Ratings above 100 will occur
Rating below 30 are reasonable

Please refer to the appendix for the Severity, Occurrence, and Detection Criteriafor FMEA.

55

Command and Data Handling System: Design and Development

peTRINWIS JO paLTele

pa1sadxe se sng ay} uo

Uo1720 IUNLLILIOD

No-swne Lie 1nb 0} swiasAsgns Joylo puodsaJ 10U S90p 821Np NOIA S1000-04 snq wesfs
sdoo| Buijjod o JRWNoo ppy | S2T | § YUMSHAaQay sl | s ane|s pessaippeayl | g Jawn Bopyorem ‘uoresedo syuny oN dn-sbueH /3lemyos
(9%G2 -/+) SSnen ased siom sainfesedwel ybiy pue sabueyo IoRe||19S0
JojBuiunyselJ wesbod | 09 | € MOjaURI® R IDL | aineledwslspiM | § 50| PRp ‘Ui yse|4 Buoim 9040 300 Ul SO LR A feuRul / NON
S7AY4
e eoWed ‘AG 12 SyIom
Jope| 1050 abUeyIX] 8T |1 preoq N3 Wpimissl | € Joe||I0so euRlxg | 9 indino afiew oN leubs 20[0 ON eubs jesuwed
[eliIeW pleod WeeHIp Speo| youre|
asn 'syden Jo Bunnos abueyd Jo uoieol|ddy "Buisal SyJe.) UaX0Iq SR
syoenayiuepm Algssod | 96 | v EINONIS SABBI| | € ‘souelepelul PUBIS | 8 Po](0.1U02 8Q J0UUED S92 feubs oN feubss / god
aouessIp ybnous aney
A8y Tey1 se yons ul ‘sspod S9P0J PURLLILLOD eEep euonippe
puewiwiod jo Buieds 300y | 09 | 9 Buoim, yymsisa] | ¢z | uonelpeloyenpsdipig | S Jo/puUe sepod puewwod BuoIpn suondniiooerq

Jamod }J0 YolIms Ued Sq3 01 feubs o1 weuew.sd punoJf Wo.j SpUeod 3AR81

SIOSUBS ON 9|0 1Sea} Se snq ayy puno.f o} snq sy smelp 10U [|IM 311 [PTES 8U)) ‘Blep/SpUeLULIoD
0] Sluauodwod Ma} Se 103UU0D 9T |1 pajndsngquimisal | z | pues|re}siusuodwod v 8 abueyoxa J0uUed swelsAsqns ainjrejapdwo) | sngweishs / Dgl

82UB.INJJ0 JOLIB 10} PaXIBYD
pue punoJb uo Si uoiepieA uolewLIou |l WesAS pue Buidsasesnoy afelors
afflewi a8y "papusiul U0 ON | 0ZT | 9 .| G| uomepeioenpdipg | v urerep Buoim ‘ssfew uisioll pPxid eEp Jo uondniiod eRp /uyse|d
afeJols apo9 I0) INOHd afelos
eusolxe Juswe|dwi Jo NOHd STelecT] aul| apo2 paldnuiooayl e dn 9p0d weJlboud yse|4
yumuysed ulilaminsgns | ¢sg | 9 Jo/puesisaluoleipey | 9 uorelpel oyanp dijig A -Buey shempe ||1m uonnaexe weiboid weiboud jo uondniiod eulel / NDN
N 1 o] N

d |3 sjonuoD Auend | O ainjeq | 3 uoljpung
SUOIY PEpUBILIODY d |a ® POYRN Uoe®Rea | O jo S)esne) enwlod | S 9.njre4 J0s18}}5 [elluelod SpoN3In|ed [eluslod pue wsi|

56

Command and Data Handling System: Design and Development

uefe uo Yams usyl
‘SPUOJ3s BB I0J WRISASONS U} 0}

SSOPPBA0 JUL.LIND

a|getedoul

Addns Jemod Jjo yolms 01SeUySd3 | 82T | 8 ‘soLuomeiey | ¢ dn-yor1 | 8 ‘JUB.IND BAISUS]XS SMeJp 821KeQ ain|eyapdwod SOl IV
SS0PABAO JUSLIND SAE Jor|nbay
peuueid uoneoN | 8T |¢€ ‘ol uoieipey | T no-uing | 9 afew oN aun|e)sl(dwo)d abeljon
SS0PABAO JUSLIND GAZ Jor|nbay
peuueid uoneoN | 8T |¢€ ‘ol uoieipey | T no-uing | 9 afew oN aun|e)sl(dwo)d abeljoA
9SOPIBA0 JUB.LIND 10R||19sO
peuueid uoneoN | 8T |¢€ ‘ol uoieipey | T no-uing | 9 afew oN ain|eyapdwod rURYT

850pJAN0 JUB.LIND
pouue|d uondeoN | 8T | € ‘soLuoieipey | T no-uing | 9 afflew| Josso ain|eyep|dwod AaNvN

850pJAN0 JUB.LIND
peuueid uondeoN | 8T | € ‘oL uoleipey | T no-uing | 9 afew! J0sso ain|rejepdwod odi4

850pJeN0 JUB.LIND
pauueid uondeoN | 8T | € ‘ol uoieipey | T no-uing | 9 elep J0 sso| ‘afielols elep oN ain|ey}ap|dwo) used

UTene uo UoTIvS T Spuosss
Md} e 10} WwelsAsgns ay) 01 A|ddns 9S0pJAA0 JUBLIND SOANIS[C0 UosSIW (14N}
Bmod 4o youws o1 sey Sd3 €9 | . ‘soLuoieipey | T no-uing | 6 jouUeD 81| jBles ‘a|desedoul SHAD ain|eyeL|dwod NON
N 1 o] N

d |3 sjouoD Auend | O ainjeq | 3 uoljpung
SUOINY PEpUBILIORDY g4 [d ® POYR N Uol®ea | O jo S)esne) fenwlod | S 9.njreH J0s18}}5 [eliuelod SpoN3In|ed [elusiod pue wsi|

57

Command and Data Handling System: Design and Development

5. Conclusion

A hardware and software solution for the CDHS engineering board was designed and finally
developed. The board is ready for testing and debugging. So far, the CDHS will fully work
based on the paper work. But as the past has shown, there is always a discrepancy between
theory and redlity, such as variations in the datasheets and the real hardware. The conducted
risk analysis is a method to identify as much potential failures as possible. Yet, more
problems could show up, that would perhaps not have been taken into account just by looking
through the documentations. Hence, intensive testing becomes essential for any project. From
the results of the tests, modifications will be implemented to the prototype and it will
eventually lead to the final model.

The result is a product that complies with the mission operation requirements and can serve as
basic framework for future endeavors, leaving enough room for possible modifications and
optimizations, in particular in terms of software.

One of the mission goals of Compass-1 is to educate the involved students and to give them

better understanding of system engineering. Long before launch, this goal has already been
accomplished.

58

Command and Data Handling System: Design and Development

6. Annex

6.1 Bill of Material (BOM)
The BOM lists the components that are assembled on the PCB of the CDHS board.

Identifier Item Definition Footprint Temp Range
Ul MCU C8051F123 TGFP64A industrial
U2 Flash K9F2808UIC TSOP48 industrial
U3 Clock Osc. MC100EL1648D 751-06 industrial
U4 Vol. Reg 3V3 ZLDO330 SO-G8/P1.53 industrial
U5 FIFO IDT72V2111 TGFP64A industrial
U6 NAND CD4011BCM M14A industrial
u7 Vol. Reg 2V5 ZXCL250 SOT23-5 industrial
Q1 Transistor MMBT2369LT1 318-08 -55 .. +150
JP1 JTAG HDR2X5 industrial
JP2 Camera Connector -25 .. +85
J1l Board Connector -25 .. +85
J2 Board Connector -25 .. +85
J3 Board Connector -25 .. +85
J4 Board Connector -25 .. +85
5] Board Connector -25 .. +85
J6 Board Connector -25 .. +85
L1 Inductor CC4532-1812 industrial
C1 Capacitor 100nF 603 industrial
C2 Capacitor 100nF 603 industrial
C3 Capacitor 100nF 603 industrial
C4 Capacitor 100nF 603 industrial
C5 Capacitor 100nF 603 industrial
C6 Capacitor 100nF 603 industrial
C7 Capacitor 100nF 603 industrial
C8 Capacitor 100nF 603 industrial
C9 Capacitor 100nF 603 industrial
C10 Capacitor 180pF 603 industrial
Cl1 Capacitor 10pF 603 industrial
C12 Capacitor 100uF 603 industrial
C13 Capacitor 10nF 603 industrial
Cl4 Capacitor 10pF 603 industrial
C15 Capacitor 1pF 1206 industrial
C16 Capacitor 1pF 1206 industrial
C17 Capacitor 2.2uF 805 industrial
R1 Resistor 2.2K 603 industrial
R2 Resistor 2.2K 603 industrial
R3 Resistor 475K 603 industrial
R4 Resistor 1K 603 industrial
R5 Resistor 10K 603 industrial
R6 Resistor 10K 603 industrial
R7 Resistor 10K 603 industrial
R8 Resistor 10K 603 industrial
R9 Resistor 10K 603 industrial
R10 Resistor 10K 603 industrial
R11 Resistor 10K 603 industrial
R12 Resistor 10K 603 industrial
R13 Resistor 10K 603 industrial
R14 Resistor 10K 603 industrial
R15 Resistor 10K 603 industrial
R16 Resistor 200 603 industrial

59

Command and Data Handling System: Design and Development

6.2 Application Layer Code

FedN NS dddededdedede NN R hhdhddddddedd NN hhdhddddedededede NN NN dddededededede NN Nhdhdddd

APPLICATION LAYER
This file contains the code implementation of the highest Tevel
of the f1owchart for the CDHS of the COMPASS 1 sate111te

e e e e e e e e e e e Y e ve e e v e e e e e v e e e e e Y ey ****/

#include <C8051F123.h> // this is the file containing MCU specific definitions
#include <globals.h> // the global variables and definitions

#include <driver_layer.c> // lowest level (hardware interface) layer

#include <device_layer.c> // middle layer

/////////////////////////////[/46//////////////////////////////}
main

//

7

// This is the main program, which essentially consists of //
// an endless loop. Inititally, the MCU runs a boot code //
// that sets all pins into pre-defined conditions. Then in //
// the loop, it is continously checked if any of the flags //
// is set, which would identify that this task shall be //
// carried out. The flags are triggered from extern (other //
// subsystems) through the interrupt service routine (ISR) //
// of the I2C system bus. The only expection of this is the//
// collection of housekeeping data. This is done on a //
// periodically basis, whenever the counter has elapsed. 4;

//
¥oid mainCvoid) ///////7///7777/7777777777777/777777777777/777/77

// initialize the counter to zero
unsigned int counter = 0;

// at beginning set all task flags to zero

flag_update_adcs = OFF;

flag_send_hk = OFF;

flag_send_img = OFF;

flag_make_img = OFF;

flag_run_adcs = OFF;

// now the boot code

reset(); // boot-up the components, which puts MCU into defined state
init_memory(Q); // load the system information from the FLASH

// this is the infinite loop
?h11e(1)

reset_wdt(); // resets the watchdog timer to prevent forced re-boot

// if any of the task flags is set then call the corresponding module
// note that during execution of the modules no interruption by IRQ is allowed

f (flag_update_adcs) { IRQ = OFF; func_update_adcs(); IRQ = ON;
if (flag_send_hk) { IRQ = OFF; func_send_hk(Q); IRQ = ON, }
if (flag_send_img) { IRQ = OFF; func_send_img(Q); IRQ = ON; }
if (flag_make_img) { IRQ = OFF; func_make_imgQ); IRQ = ON; }
if (flag_run_adcs) { IRQ = OFF; func_run_adcs(); IRQ = ON; }
reset_wdt(); // reset the watchdog timer
counter++; // increase the counter
// check if the counter exceeds the pre-set time period
}f (counter >= HK_COLLECTION_DELAY)
counter = 0; // reset the counter to zero
IRQ = OFF; // don't allow interruption
func_collect_hk(Q); // call function to collect housekeeping data
IRQ = ON; // interrupts on

}

/ end of main(

/
///

60

Command and Data Handling System: Design and Development

6.3 The Command Codes

Each command code is specific. It specifies the two involved participants and what is
happening. Command codes that have one byte are used to trigger (activate / deactivate)
certain functions of a subsystem or to signal their state. In other cases they are used to transfer
data over the bus and to assure that it reaches the correct destination.

The encoding of the command codes is based on eight bit syntax, thus allowing a total of 256
different commands. The spacing between command codes are chosen in such a way, as that
they differ for each two subsystem combinations in two bits. Thisis done to reduce the effects
of bitflips. An occurrence of two or more bitflips at atime is especially unlikely and can thus
be neglected.

From |[To | CC |Add.data |Description

CDHS ADCS Ox11 |- Request housekeeping data
ADCS CDHS 0x22 |13 Bytes Send housekeeping data
ADCS CDHS 0x33 |- Request for activation
CDHS ADCS 0x44 |- ADCSon

CDHS ADCS 0x55 |- ADCS off

ADCS CDHS Ox66 |- Urgent Request for activation
CDHS ADCS Ox77 | 3Bytes Update ADCS parameter (for slew)
ADCS CDHS 0x88 |- ADCS control finished
CDHS EPS 0x12 |- Request housekeeping data
EPS CDHS 0x23 | 25 Bytes Send housekeeping data
CDHS COM 0x13 | 256 Bytes Send housekeeping to ground
CDHS COM 0x24 | (640x480) Send image to ground

COM CDHS 0x35 |- Request for image capturing
COM CDHS 0x46 | 1Byte Request for image number X
COM CDHS 0x57 |3Byte Send parameter to ADCS
COM CDHS 0x68 |- Request housekeeping data
COM CDHS 0x79 |1Byte Camera exposure settings

6.4 Device Slave Addr esses

The slave addresses are the 7-bit unique identification for each participant at the 12C system
bus. The table can only be completed with the input from the other subsystems. It is very
important that al other systems maintain the same list of addresses.

Subsystem Device Address (hex)
ALL General Calling Address 0

PAYLOAD CAM 42

ADCS MCU TBD

CDHS MCU TBD

EPS MCU TBD

COM TNC-TX TBD

COM TNC-RX TBD

61

Command and Data Handling System: Design and Development

6.5 Severity, Occurrence, and Detection Criteriafor FMEA

Ranking| Effect Criteria: Severity of Effect

| None No elTect

2 Verv Minor | Very minor effect on product or svstem
performance.

3 Minor Minor effect on product or system performance.

4 Low Small effect on product performance.
The product does not require repair.

5 Moderate Moderate effect on product performance.
The product requires repair.

6 Significant | Product performance is degraded. Comfort or
convenience functions mav not operate.

7 Major Product performance is severely affected but
functions. The svstem may not be operable.

8 Extreme Product is inoperable with loss of primary function.
The system is inoperable.

9 Serious Failure involves hazardous outcomes and / or
noncompliance with sovt. regulations or standards.

10 Hazardous | Failure is hazardous, and occurs without warning. It
suspends operation of the system an/or involves
noncompliance with govt. regulations

Ranking | Possible Probability of Failure
Failure Rates

I <1x10° Nearly Impossible

2 [x 107 Remote

3 L x 107 Low

4 4x 107 Relatively Low

5 2x 107 Moderate

6 1 x 1077 Moderately High

7 4x 10~ High

8 0.2 Repeated Failures

] (.33 Very High

[0 =0.55 Extremely High: Failure Almost
[nevitable

Ranking Detection Probability
1 Almost Certain Detection
2 Very High Chance of Detection
3 High Probability of Detection
4 Moderately High Chance of Detection
5 Moderate Chance of Detection
6 Low Probability of Detection
7 Very Low Probability of Detection
8 Remote Chance of Detection
9 Very Remote Chance of Detection
10 Absolute Uncertainty — No Control

62

Command and Data Handling System: Design and Development

6.6 Abbreviations

ADCS
BOM
CDHS
COM
COTS
EM
EPS
FM
FMEA
HK
IDE
ISR
MCU
oS
PCB
SEE
SEL
SEU
SMD
TCS
TID
WDT

attitude determination and control system
bill of materials

command and data handling system
communication system

commercia off-the-shelf
engineering model

electrical power system

flight model

failure mode and effects analysis
housekeeping data

integrated devel opment environment
interrupt service routine

micro control unit

operating system

printed circuit board

single event effect

single event latch-up

single event upset

surface mount device

thermal control system

total ionizing dose

watchdog timer

63

Command and Data Handling System: Design and Development

6.7 References

(1
(2]

(3]
(4]

(9]

(6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]
(14]
(19]
(16]
(17]
(18]

Scholz, A. (2004) Phase B Sudy of CDHS for COMPASS-1. www.raumfahrt.fh-aachen.de

Twiggs, B. and Puig-Suari, J. (2003). CUBESAT Design Specifications Document, Rev. VIII.
http://cubesat.cal poly.edu/

Marks, L and Caterina, J. A. (2000) Printed Circuit Assembly Design. McGraw-Hill, New Y ork, USA

MRC Microelectronics () Radiation Hardening Microelectronics.
http://www.mrcmicroe.com/Radiation Hardening.htm

Shirvani, P. P. (2003) COTS Technology & |ssues — Space Environments. 44" Meeting of |FIP Working Group.
Montery, USA

Some, R. () Radiation Models and Hardware Design. JPL Caltech, USA

Philips Semiconductor (2000) The I2C-Bus Specification. http://www.semiconductors.philips.com/i2c

Silicon Laboratories (2003) C8051F120/1/2/3/4/5/6/7-DS12. www.silabs.com
Samsung (2003) K9F2808UOC FLASH MEMORY. www.samsung.com
IDT (2001) IDT72Vv2111 SUPERSYNC FIFO. www.idt.com

Philips (1998) 74LVCO0A Quad 2-input NAND gate. www.semiconductors.philips.com

ON Semiconductors (2004) MC100EL 1648. http://onsemi.com

Zetex (2002) ZXCL250 Series. www.zetex.com

Zetex (1996) ZLDO330 Series. www.zetex.com

Keil Software (2001) Cx51 Compiler User’s Guide. www.keil.com

ECSS-E-10-04A (2000) Space Environment. ESA-ESTEC, Noordwijk, The Netherlands
Miller, G. H. (2004) Microcomputer Engineering. Prentice Hall, New Jersey, USA

Schildt, H. (2000) C: The Complete Reference, Fourth Edition. McGraw-Hill, Berkeley CA, USA

